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Symmetry group for a completely symmetric vertex model? 

Matthew P Richey and Craig A Tracy 
Department of Mathematics, University of California, Davis, CA 95616, USA 

Received 4 August 1986, in final form 29 September 1986 

Abstract. The symmetry group for the partition function of the completely X symmetric 
vertex model is determined. Here X is an arbitrary finite Abelian group. 

1. Introduction 

Let A be a square lattice with M rows and N columns. We assume periodic boundary 
conditions. Let X be any finite Abelian group. A configuration w is defined by 
assigning elements of X to the bonds of A; let s1, be the set of all such configurations 
U.  To each vertex with bond states x, y ,  U, U E X is assigned a Boltzmann weight Si;. 
The weight of a configuration w E 0, is defined to be the product over all lattice sites 
in A of the individual Boltzmann weights. Thus the partition function Z,  is given by 

Following Belavin (1981) and Chudnovsky and Chudnovsky (19811, we say such a 
vertex model is completely X symmetric if the Boltzmann weights satisfy 

s:; = 0 unless x + y  = U + U (1.2a) 

and 

(1.2b) 

where we have written the group law of X in additive notation. For the case X = 2 / 2 2  = 
Z2 the above vertex model is Baxter’s symmetric eight-vertex model (Baxter 1972, 
1982). If 1x1 denotes the order of X ,  then this X symmetric model depends upon IXI2 
independent parameters (one of these being an overall normalisation). We write Z, [S ]  
to denote the dependence of 2, upon the Boltzmann weights S::. 

For X = Z2 Fan and Wu (1970) (see also Fan 1972, Johnson ef a1 1973) discovered 
that 2, has certain symmetries. To state their results, we write S as 

U f Z  c + z  
S X + Z , + L  = s:; for every x, y ,  U, U, z E X 

where a0 is the 2 x 2  identity matrix and d, j =  1, 2, 3, are the Pauli spin matrices. 
Then Fan and Wu proved 

Z , [ * W b , * W , , , * W l z ’ * W , , I = ~ \ [ W 0 , W I ,  W Z , W 3 1  (1.4) 

t Supported in part by the National Science Foundation, grant no DMS 84-21141. 
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2668 M P Richey and C A Tracy 

where (io,  i l  , i 2 ,  i3) is any permutation of (0, 1,2 ,3)  and f denotes any choice of signs. 
This symmetry is important in Baxter's solution of the symmetric eight-vertex model 
(Baxter 1972, 1982). It is the purpose of this paper to determine the symmetry group 
for Z , [ S ]  when X is any finite Abelian group and S is completely X symmetric. 

As was first emphasised by Belavin (1981) and Chudnovsky and Chudnovsky (1981) 
(see also Bovier 1983, Cherednik 1982), the Heisenberg group is important in any 
discussion of the X symmetric model. To establish notation and to make the paper 
self-contained, we collect in § 2 those results we need concerning the Heisenberg group. 
Our principal mathematical references are Mumford (1983) and Siege1 (1971). We 
have included a self-contained proof of the well known result in lemma 2.1. Presumably 
lemma 2.2 is also well known but we could not find any explicit references. In § 3 we 
determine the symmetry properties of Z J S ]  following the methods of Richey and 
Tracy (1986) where the case X = Z / n Z = Z .  was first considered. These authors in 
turn built on the work of Fan and Wu (1970), Fan (1972), Wegner (1971,1973) and 
Johnson er a1 (1973). In particular, the idea to use the similarity transformation in 
the proof of theorem 3.1 can be traced back to these early papers. Here, we have 
shown the generality of this method and have clarified the role the Heisenberg group 
plays in the symmetries. In 04 we discuss the connection between theorem 3.1 for 
X = 2, and previous work (Richey and Tracy 1986). The results obtained here require 
no restrictions on the Boltzmann weights S:. Normally restrictions on multistate vertex 
models arise when one demands commutativity of the transfer matrices. Further 
discussion of the relationship between symmetries and commutativity of transfer 
matrices can be found, for the case X =Z,, in Richey and Tracy (1986). 

2. Heisenberg group for a finite Abelian group 

As is well known any finite Abelian group X ,  with 1x1 = n, is isomorphic to 

X = Z , , O . .  .OZ,, (2.1) 
where n = n, . . . n,, n, a prime power. Also distinct choices of the n, result in distinct 
(non-isomorphic) finite Abelian groups. If X = Z,, then the decomposition n = n, . . . n, 
is the prime decomposition of n with each of the primes distinct. In this case, the 
isomorphism Z, +Z,,O.. . 0 Z n r  is commonly referred to as the Chinese remainder 
theorem (CRT). 

An element a' of X may be identified with an r-tuple a ' =  ( a i , .  . . , a ; ) ,  a :  E Zn8 = 
{0,1, .  . . , n, - I}. Let Z;, =Z,, xZ,, and G, =Z',, x . .  . xZ',,. Thus an element a E G, 
can be written as 

a = ( a ' ,  a" )  a ' ,  a " €  x =Z,,O.. .OZ,, 
or 

a = ( a l ,  . . . , a r )  a , = ( a : ,  a : ) E Z ' , ,  

or 

a = ( a !  ) . . . )  a : , a ;  , . . . )  a ; )  a : ,  ay E Zn,. 

The method of expressing a will depend upon the context. 
We now define a Heisenberg group associated with X .  This could be defined 

abstractly, but we prefer to give first the 'coordinate version' as it proves useful in the 
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statistical mechanics. For an arbitrary positive integer n k ( >  1)  we define operators gk 
and hk by 

gkej = w i e j  j = o ,  1,. . . , n k  - 1 

h e ,  = e , + ,  
where is the standard basis of @ " A  and wk = exp(2.rri/nk). Let 

I,, = hrAgrA a k = ( a L ,  a i ) E Z ; ,  (2.4) 
then 

I * A  I PA = w ( ~ P A * ~  A ) 'PAz,, (2.5) 
with (Pk, ak)=P;aZ-Pia ; .  Let H,, be the group of operators generated by I , , ,  
(Yk E Z:A. Then H,, is the Heisenberg group associated with Z,,. For X identified as 
in (2.1) we define the associated Heisenberg group Hx by 

H,y =H, ,O. .  .OH,,. (2.6) 

I ,  = I e , 0 . .  .@Iar a = ( a [ ,  . . . , a,), a,  E z;, (2.7) 

We write 

and observe for all a, p E X x X 

I& (2.8) B ( P . 0 )  I , + p  = 

where 

(2.9b) 

and w = exp(2ri /n) .  

Lemma 2.1. The action of Hx on @"-@"IO. . .@C"r is irreducible. 

ProoJ: Let x be an arbitrary non-zero element of @ "  

i = ( l l ,  , I , ) E Z , , , X  xz,,, 

We will show that the action of H x  on x spans @". If we can show that eo@.  . . @ e ,  
is in the span of Hx on x, then we are done since 

h11@. . .O h ) e , O .  . .O e,  = e,, 0. . .O e, , .  
Since x # 0 one of the coefficients c, = c , ,  I ,  # 0. Applying h; 'IO.  , .@ h;'. to x allows 
us to assume that co = co . . ., # 0. Now if 

X =  c clef, 0. . .O e, , .  

XP := g f 1 0 . .  . O g f , x  
= 1 c,wBl'l . . . wfr're,, 0. . .@ el, 

I 

then 
1 xp  = nc,eoO.. . @ e ,  

P i ,  .... P: 

since Z p ;  wfl'h = nkSo,rl. Since co Z 0, e, is in the subspace spanned by Hx on x ;  and 
hence the lemma has been proved. 
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Let E denote the r x r diagonal matrix with diagonal entries n /  n, and define the 
2 r x 2 r  matrix J by 

J = (  - E  “) 0 (2.10) 

Then in obvious matrix notation we can write (2.9) as 

k ( a ,  p )  =‘a‘Ep’ ’  (2.11a) 

and 

B ( a ,  p )  = ‘ a J p  (2.11 b )  

where a = (a ’ ,  a”),  /3 = ( p ’ ,  p” )  E G, (and are written as column vectors). 
It will be convenient to introduce the Siege1 upper half-space X r  which consists of 

all r x r complex symmetric matrices whose imaginary parts are positive definite. Let 
R E X r ,  denote by R , ,  . . . , R, the columns of R and e , ,  . . . , e, the standard basis of 
C‘. Then to each a E G, we associate a point on the lattice 

(2.12) Ln = RZr + EZ‘ 

by 

a++a{R,  +. . . + a:C!,+ a ; ( n / n l ) e l  +. , . + a : ( n / n , ) e ,  (2.13a) 

or, more compactly, 

a H R Q ’ +  Ea”. (2.13 b )  

This mapping forms a natural association of elements I ,  of Hx with lattice points 
of Ln. In particular, changing generators of Hx is equivalent to changing generators 
of Lo. Consider the group of matrices r E  defined by 

r E  = { y = ( I A B  
D ) :  A, E, C, 0, r x r matrices with integer entries and  ‘ y J y  = J . 

(2.14) 

Note for E = I ,  F E  = Sp(2r, Z), and for any y E r E ,  det y = il. Let 

where y =  (,“ ; ) € r E ,  then (‘P,‘Q) are new generators of Lo.  To see this, we need 
only show that for any a =Ra’+ Ea“€ L o ,  there is a 6 =  (t’, 5”) E G, such that 

a =‘P,$+‘Q(” 

= ( ‘R‘A+‘E‘B)~‘+(‘R‘C+‘E‘D)~”  

= R(‘A6’ + IC(’’) + E ( ‘ E t ’  + ‘06 ’ ’ ) .  
That is, 

(1;) = ( ‘ A  ‘ E  ‘ D  IC)( 6” 6 ’ )  = ‘y6.  

Since r E  is a group, 6 = ‘( y - l ) a  is an element of G,. For y E F E  let y 1  , . . . , y r ,  S I ,  . . . , 6, 
denote the 2r columns of y.  To each y , ,  6, we associate an  element of G, by y ,  = ( y i ,  y : )  
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where y :  consists of the first r rows of y, and y:' consists of the last r rows, and 
similarly for 6, = (a:, 6;). 

For any y E r E  we define a family of Heisenberg elements 

I : = ( I,, ) i . . . ( z,, ) ";( I,, ) 1 . . . ( I 6 , )  L Y E  G,. (2.15) 

It is easy to check that 

I,' = W P I r =  P E Z .  (2.16) 

Then we have the following lemma. 

Lemma 2.2. For each y E I 'E there exist? an  invertible matrix U,  : @"  -+ @"  such that 
for all cy E G, 

I :  = AU,Z,U,' 

where A is some scalar depending on a. 

ProoJ: Let y E r E  and denote & the 2r x 1 column vector with all zeros except for a 1 
at  the kth row. 

Then for all k, I =  1 , .  . . , r 

( 2 . 1 7 ~ )  

(2.17 b )  

Now let xo be any common eigenvector of the Is , ,  i = 1 , .  . . , r :  

I6,xo = A , x ~ .  

Define xJ = xJ, . . by 

XJ = ( IYI y, . . . ( I , , ) J ~ X 0  j k  E zl,. 
Then using (2.17) we see that 

11 J r  
I ; ,  . . . I$,xJ, . . . J,  =A{'  . . . A?w'; l'"'"h''klAx 

and 

'$1 ' ' ' '$rXJi J r  = x l ~ + l ~ .  J r + l r '  

Since the action of Hx on @ "  is irreducible, we conclude that the set {xJl  
Z,, x . . . x Z,,} is a basis for C". Let U, be the change of basis matrix 

j = ( I ] , .  . . ,A) .  

: ( j ,  . . . j ,) E 

UyeJ = xJ 
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and 

U;'I,,U,eJ = U;lIykxJ 

= u ; ' x J l ,  . J k + ' .  .Jr 

- 
- J A + ~  J r  

That is, A;'U;'ZbkUy is 10 . . .  0 g 0  . . .  0 Z  ( g  at the kth slot) and U;'ZyAU, is 
I O ,  . .0 h 0. , .0 I ( h  at the kth slot). Then an easy calculation shows that 

I :  =AU,I,U;~ where A =A:! . . . A:,. 

3. Symmetries of the partition function 

The Boltzmann weights SF, i ,  j ,  k, I E  X define a completely X symmetric matrix S in 
the standard basis { e i O e J } i , J E X  for C" xC".  Belavin (1981) and Chudnovsky and 
Chudnovsky (1981) have shown that a n2 x n2 S is completely X symmetric (satisfies 
conditions (1.2)) if and only if 

The partition function, Z,, ,  for a finite rectangular lattice A with cyclic boundary 
conditions may be written as 

2, = Tr( T M )  M = number of rows of A 

where 

7-P.S =Tr(~(al,P,)...~(aN,PN)) 

a = (a1,. . . , a N )  

( U a ,  P ) ) A +  =e 

P = (PI I . . . 9 P N  ) a19 PI E x 
N is the number of columns of A and L(a ,  P )  is the n x n matrix defined by 

a, P, A, F E x. 
Due to the invariance of the trace under similarity transformations, it is easy to see 
that if 

s+ U,@ u2su;'0 U;'= s" 

Z,[SI = ZJSI. 

where U ,  and U, are any n x n invertible matrices, then 

We will now consider some special cases of similarity transformations; in particular, 
those associated with the Heisenberg group Hx. First choose 

U ,  = I p  U, = Z = identity 
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and consider 

S =  I , O I S Z ; ~ O I =  I O I ; ~ S I B I , .  

In terms of the w, we have using (2.8) 

I,OZSZ,'@Z =c W B ( , . @ ) W  m a  z @ I ; , .  

Hence the similarity transformation on the S matrix SH I ,@ ISZj'O I is equivalent 
to the transformation on the w, coordinates 

w,. w , H W B ( m . P )  

The second type of similarity transformation we will consider arises from the choice 
of new generators for Hx.  For y E r E ,  we define 

s y  = C w ~ I ; B ( I ; ) - ~  
5s G,, 

where I ;  is defined by (2.15). By lemma 2.2 we have 

sy  = U,@ UYSU,'@ U;'  

ZA[SYI = ZJSI. 

z;o(z;)-'= zy&3z;; 

sy  = c w&,* 0 z;; = wl;: I* 0 & I .  

so that 

By (2.16) 

so that 

Hence the similarity transformation SH Sy- '  corresponds to the transformation we - 
wye. We now have the following theorem. 

Thereom 3.1. Let S be any X symmetric matrix, Z,,[S]  the corresponding partition 
function for a finite rectangular lattice with cyclic boundary conditions. Write 

Then Z J S ]  is invariant under the transformations on S given by 

W I  - B( &e w* CYEZ'XZ' 

we - w,* Y E r E *  

The a only depends on its coset in (Z/ n,Z x . . . x Z,,,Z)' and y only depends on its 
coset in r E \ r E ( n , ,  . . . , n,) where 

= c k i  E Dk, = 0 mod n k  for i f k . I 
Also, the action of r E  normalises the action of Z' x Z' showing that the symmetry 
group is 

r E  qzrxzr) .  
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Proof: The invariance of the partition function has already been demonstrated. The 
statement that a only depends on its coset in (Z/n ,Z  x . . . x Z/n,Z)’ follows from if 
p E (n ,Z  x . . . x n ,Z, ) ’ ,  then from (2.9b) 

w5, P )  = 0 (mod n). 

I f  y E r E  ( n ,  , . . . , n r ) ,  then 

I , , = I @  . . .  @ h k @  . . .  @ I  

18, = I@. . . @ g k @ .  . .@ I. 
Thus I,, = It for all 5. 

of y E r E  and a E ( Z r  x Zr): for arbitrary w, we have 
The fact that r E  normalises the action of Z‘ X Z‘ follows from the combined action 

Thus the combined action is equivalent to the action of just ya  = CY’E Z‘ x Z‘. This 
being the definition of the semidirect product we conclude the symmetry group is 
r E  >a(z‘ x Z‘). 

To obtain the symmetries of Fan and Wu mentioned previously, we must consider one 
more construction. We choose any Heisenberg matrix I ,  such that I’, is a multiple of 
the identity. This is only possible if n is even, in which case a = ( a  I, . . . , a :, a ;I, . . . , a:)  
must be such that 

a : ,  ay = O(mod n , )  

a : ,  ay =in,(mod n,) 

if n, is odd 

if n, is even 

implying that 2 a  3 (0,O) and I’, = *identity. Following the construction in Richey 
and Tracy (1986), one can show that Z [ S ]  is invariant under the transformation 

S H I , @ I , ’ S  

(assuming that the number of rows and columns of the lattice is even). If n = 2, this, 
along with theorem 3.1, give us the symmetries of Fan and Wu. 

Using theorem 3.1, we now obtain an interesting case of the symmetries which 
reduces to the so-called ‘weak graph duality’ (Wegner 1971, 1974, Fan and Wu 1970, 
Fan 1972, Johnson et a1 1973). This relates a high-temperature model (all weights 
almost equal) to a low-temperature one (one weight, S::, dominant). 

For any a E G,, a = ( a ; ,  . . . , a:, ay , .  . . , a : )  = (a’ ,  a”),  consider the transformation 

a = (1’:) + ( -a’ a ” )  

The matrix y E r E  representing this transformation is 

I = r x r identity matrix. 

The corresponding transformation on the weights can be described as follows. Using 
X symmetry, any weight Sf can be written as 

s;= So,,-, k - ’ - ‘ - ,  - - 

a = k - i e  X 
b = I- i E X .  
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It is straightforward to confirm that 

a s z , , , x  xz, , ,  

- I  n / n ,  ) h ,  a, -i n / n , ) h , a ,  s; = S5.h = c W ( - 5 , a ) @  

and the associated inversion formula 

W i 5 . b )  =- 

Letting ( a ’ ,  a”)  + (a”,  -a‘) induces 

s - - L I , P ~ ( ~ / ~ , ) ~ , P , +  + l n l n , ) h , P ,  

n P t z , , l x  xz,, ,  

- ln /n l )b la l -  - ( n / n , ) h , a ,  = 3 a . h  +z W ( m . 5 ) W  
a 

Using the inversion formula 

If we let 7‘- CO, Sk,’+= 1 i, j ,  k, I ;  hence 

= ns:l . . . s ,” ,s ,“~.  . . a $  

= {: otherwise. 
if a = b = (0, . . . , 0) 

Hence the rE transformation (a‘ ,  a”) --* (a”,  -a’) sends a high-temperature model to 
a low-temperature one, while preserving the partition function. 

4. Discussion of the case X =Z,, 

If X =Z, = Z n , O . .  .OZ,,, then we have (nz ,  n,) = 1, i # j ,  i.e. the primes are distinct. 
This case has been previously investigated (Richey and Tracy 1986) so we show that, 
as expected, the new formalism of the previous sections results in no new symmetries. 
The isomorphism Zn,O.. .OZ,,+Zn is the Chinese remainder theorem. This theorem 
asserts that for any r-tuple ( a I , .  . . , a,) E Z,,O. . .OZ,,, there is a unique CU (mod n )  
such that CU = a ,  (mod n2) ,  i = 1, .  . . , r. 

Let 1 = (n/n,)(mod n,), i = 1 , .  . . , r. Then since (n, ,  n /n , )  = 1 we have ( n t ,  I )  = 1 
which implies (n, 1 )  = 1. Moreover for any a, p E Gn we have 

where E = (CU’, &“), p= (p‘, p”), Cr = a :  (mod n,), etc. To show this is true mod n, we 
need only to demonstrate (4.1) holds mod n,, i = 1 , .  . . , r :  

B ( a ,  p )  = I ( & ,  @)(mod n )  (4.1) 

’ n  
B ( a , p ) =  - ( a $ : - a : p ; )  

k = l  n k  

= (n /n , ) (a :P : I -a : ’p : ) (mod n,) 
= l(6’D’’- CU”p’)(mod nl) .  

since (n , ,  n,) = 1 for i # j  

Under the map 6 E G, H f~ Z, x Z n  we can identify wg with W F .  We first see that 
thesymmetry w ~ + o ~ ~ ~ ~ ~ ’ ~ ~ ,  .$,p E Gn = (Z,,,O.. .OZ,,)*isequivalentto W ~ - W ’ ( ~ - ~ ) W ~ ,  
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~ B E Z ,  xZ,. Since ( 1 ,  n )  = 1, U‘ is a primitive nth root of unity, and hence no new 
symmetries are obtained. 

A more interesting situation arises when we consider the effect of changing gen- 
erators in Hx .  This corresponds to choosing some y ~ r E .  The action of y on 
(Z,,O.. .OZ,,)* induces our action on Z’, as follows: 

( Y E ( Z ” , O . .  .OZ.,)*- y a E ( Z n , O . .  .OZ,,)’ 

C RT 1 CRT 

Since the CRT and y are linear, the map 6 -- is also linear and hence has a matrix 
representation (Y -=jZ = AG. We will show that A E SL(2, Z,). This will suffice to show 
that the action w ,  I+ w~ = wAn induces no new symmetries not discussed in Richey 
and Tracy (1986). Since A: Z’, + Z’,, it is enough to show that det ( A )  = 1 (mod n) .  
Now y E r E  if and only if B ( y a ,  yP)  = B ( a ,  P )  for all a, P E G, and A E  SL(2, Z,) if 
and only if (AG, AB) = (6, B )  for all 6, BE Z’,. In particular, for (Y = (1,O) and = (0, 1) 

(A&, AB) = det A 

but by (4.1) 

‘ n  
= B ( a , P ) =  - 

k = l  n k  

since 

a = ( a { , .  . . , a:, a ; ,  . . . , a ; )  

w i t h a : = l , a : l = O a n d p = ( P i  , . . . ,  p: ,p ’ ;  , . . . ,  P:’)withpl=O,P:’=l .  Hencewehave 

‘ n  
l d e t A =  -. 

k = l  n k  

Consider this equation mod n, and recall that 1 = (n/n,)(mod n , )  and (n , ,  n,) = 1, i # j ,  
we have 

det A = 1 (mod n i )  i =  1,. . ., r 

which implies det A = 1 (mod n).  
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